skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nosek, Brian A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This meta-analysis evaluated theoretical predictions from balanced identity theory (BIT) and evaluated the validity of zero points of Implicit Association Test (IAT) and self-report measures used to test these predictions. Twenty-one researchers contributed individual subject data from 36 experiments (total N = 12,773) that used both explicit and implicit measures of the social–cognitive constructs. The meta-analysis confirmed predictions of BIT’s balance–congruity principle and simultaneously validated interpretation of the IAT’s zero point as indicating absence of preference between two attitude objects. Statistical power afforded by the sample size enabled the first confirmations of balance–congruity predictions with self-report measures. Beyond these empirical results, the meta-analysis introduced a within-study statistical test of the balance–congruity principle, finding that it had greater efficiency than the previous best method. The meta-analysis’s full data set has been publicly archived to enable further studies of interrelations among attitudes, stereotypes, and identities. 
    more » « less
  2. Any large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research. 
    more » « less